Referencias
Berger, J. O. (2010). Statistical Decision Theory and Bayesian Analysis. Springer New York.
Bolstad, W. M. (2004). Introduction to Bayesian Statistics. Wiley.
Buck, C. E., Rakow, T., Garthwaite, P. H., O’Hagan, A., Oakley, J. E., Daneshkhah, A., Eiser, J. R., & Jenkinson, D. J. (2006). Uncertain Judgements: Eliciting Experts’ Probabilities. Wiley.
Buck, C. E., Rakow, T., Garthwaite, P. H., O’Hagan, A., Oakley, J. E., Daneshkhah, A., Eiser, J. R., & Jenkinson, D. J. (2006). Uncertain Judgements: Eliciting Experts’ Probabilities. Wiley.
Cameletti, M., & Blangiardo, M. (2015). Spatial and Spatio-temporal Bayesian Models with R - INLA. Wiley. Code and data in SSTBM-RINLA https://sites.google.com/a/r-inla.org/stbook/datasets
Carlin, J. B., Gelman, A., Vehtari, A., Rubin, D. B., Dunson, D. B., & Stern, H. S. (2013). Bayesian Data Analysis. CRC Press. Available at stat.columbia.edu. Course by Aki Vehtari https://github.com/avehtari/BDA_course_Aalto
Christensen, R., Hanson, T. E., Branscum, A., & Johnson, W. (2011). Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians. Taylor & Francis.
Congdon, P., & Congdon, P. P. (2003). Applied Bayesian Modelling (Wiley Series in Probability and Statistics). Wiley.
CRAN Task View: Bayesian Inference. (n.d.). The Comprehensive R Archive Network. Retrieved November 17, 2022, from https://cran.r-project.org/web/views/Bayesian.html
Donovan, T. M., & Mickey, R. M. (2019). Bayesian Statistics for Beginners: A Step-by-step Approach. Oxford University Press.
Dorazio, R. M., & Royle, J. A. (2008). Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities. Elsevier Science.
Faraway, J. (n.d.). Examples using INLA for Bayesian Regression Models. Julian Faraway. Retrieved October 27, 2022, from http://julianfaraway.github.io/brinla/examples/
Faraway, J. (2022, August 23). Package faraway: Functions and Datasets for Books by Julian Faraway. The Comprehensive R Archive Network. Retrieved October 27, 2022, from https://cran.r-project.org/web/packages/faraway/faraway.pdf
Faraway, J. J., Wang, X., & Yue, Y. (2018). Bayesian Regression Modeling with INLA. CRC Press.
Gabry, J., & Mahr, T. (n.d.). Plotting for Bayesian Models • bayesplot. Stan. Retrieved November 17, 2022, from http://mc-stan.org/bayesplot/
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. and Gelman, A. (2019), Visualization in Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. https://doi.org/10.1111/rssa.12378
Gelman, A., Fagan, J., & Kiss, A. (2007). An Analysis of the New York City Police Department’s “Stop-and-Frisk” Policy in the Context of Claims of Racial Bias. Journal of the American Statistical Association, 102(479), 813-823. 10.1198/016214506000001040
Gómez-Rubio, V. (2020). Bayesian Inference with INLA. CRC Press. Available at https://becarioprecario.bitbucket.io/inla-gitbook/index.html
Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods. Springer.
Kurt, W. (2019). Bayesian Statistics the Fun Way: Understanding Statistics and Probability with Star Wars, LEGO, and Rubber Ducks. No Starch Press.
Link, W. A., Link, W. A., & Barker, R. J. (2010). Bayesian Inference: With Ecological Applications (R. J. Barker & W. A. Link, Eds.). Elsevier Science.
Malouche, D. (n.d.). R tools for Bayesian Statistics. Kaggle. Retrieved November 17, 2022, from https://www.kaggle.com/code/dhafer/r-tools-for-bayesian-statistics
McGrayne, S. B. (2011). The Theory that Would Not Die: How Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian Submarines, & Emerged Triumphant from Two Centuries of Controversy. Yale University Press.
McGrayne, S. B. (2011). The Theory that Would Not Die: How Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian Submarines, & Emerged Triumphant from Two Centuries of Controversy. Yale University Press.
plot: Default INLA plotting in andrewzm/INLA: Functions which allow to perform full Bayesian analysis of latent Gaussian models using Integrated Nested Laplace Approximaxion. (n.d.). RDRR.io. Retrieved November 17, 2022, from https://rdrr.io/github/andrewzm/INLA/man/plot.html
R-INLA project. (2022). R-INLA Project. Retrieved November 17, 2022, from https://www.r-inla.org/
Robert, C. P., & Marin, J.-M. (2013). Bayesian Essentials with R. Springer New York.
Ross, K. (2022). An Introduction to Bayesian Reasoning and Methods. Online publication available at https://bookdown.org/kevin_davisross/bayesian-reasoning-and-methods/poisson.html. Consultado en octubre 2022.
Rue, H. et al (2017). Bayesian Computing with INLA: A Review. Annu.Rev.Stat.Appl. 4: 395:421. DOI: 10.1146/annurev-statistics-060116-054045.
Samanta, T., Ghosh, J. K., & Delampady, M. (2006). An Introduction to Bayesian Analysis: Theory and Methods (T. Samanta, M. Delampady, & J. K. Ghosh, Eds.). Springer.
Statisticat, LLC. (2015). LaplacesDemon Examples. Retrieved October 23, 2022, from https://cran.r-project.org/web/packages/LaplacesDemon/vignettes/Examples.pdf
Statisticat, LLC. (2015). Bayesian Inference. The Comprehensive R Archive Network. Retrieved October 23, 2022, from https://cran.r-project.org/web/packages/LaplacesDemon/vignettes/BayesianInference.pdf
Stigler, S. (2016, April 12). LaplacesDemon: A Complete Environment for Bayesian Inference within R. The Comprehensive R Archive Network. Retrieved October 23, 2022, from https://cran.r-project.org/web/packages/LaplacesDemon/vignettes/LaplacesDemonTutorial.pdf
Wang, X., Yue, R., & Faraway, J. (n.d.). Bayesian Regression with INLA | brinla. Julian Faraway. Retrieved October 27, 2022, from http://julianfaraway.github.io/brinla/