Referencias

  • Berger, J. O. (2010). Statistical Decision Theory and Bayesian Analysis. Springer New York.

  • Bolstad, W. M. (2004). Introduction to Bayesian Statistics. Wiley.

  • Buck, C. E., Rakow, T., Garthwaite, P. H., O’Hagan, A., Oakley, J. E., Daneshkhah, A., Eiser, J. R., & Jenkinson, D. J. (2006). Uncertain Judgements: Eliciting Experts’ Probabilities. Wiley.

  • Buck, C. E., Rakow, T., Garthwaite, P. H., O’Hagan, A., Oakley, J. E., Daneshkhah, A., Eiser, J. R., & Jenkinson, D. J. (2006). Uncertain Judgements: Eliciting Experts’ Probabilities. Wiley.

  • Cameletti, M., & Blangiardo, M. (2015). Spatial and Spatio-temporal Bayesian Models with R - INLA. Wiley. Code and data in SSTBM-RINLA https://sites.google.com/a/r-inla.org/stbook/datasets

  • Carlin, J. B., Gelman, A., Vehtari, A., Rubin, D. B., Dunson, D. B., & Stern, H. S. (2013). Bayesian Data Analysis. CRC Press. Available at stat.columbia.edu. Course by Aki Vehtari https://github.com/avehtari/BDA_course_Aalto

  • Christensen, R., Hanson, T. E., Branscum, A., & Johnson, W. (2011). Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians. Taylor & Francis.

  • Congdon, P., & Congdon, P. P. (2003). Applied Bayesian Modelling (Wiley Series in Probability and Statistics). Wiley.

  • CRAN Task View: Bayesian Inference. (n.d.). The Comprehensive R Archive Network. Retrieved November 17, 2022, from https://cran.r-project.org/web/views/Bayesian.html

  • Donovan, T. M., & Mickey, R. M. (2019). Bayesian Statistics for Beginners: A Step-by-step Approach. Oxford University Press.

  • Dorazio, R. M., & Royle, J. A. (2008). Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities. Elsevier Science.

  • Faraway, J. (n.d.). Examples using INLA for Bayesian Regression Models. Julian Faraway. Retrieved October 27, 2022, from http://julianfaraway.github.io/brinla/examples/

  • Faraway, J. (2022, August 23). Package faraway: Functions and Datasets for Books by Julian Faraway. The Comprehensive R Archive Network. Retrieved October 27, 2022, from https://cran.r-project.org/web/packages/faraway/faraway.pdf

  • Faraway, J. J., Wang, X., & Yue, Y. (2018). Bayesian Regression Modeling with INLA. CRC Press.

  • Gabry, J., & Mahr, T. (n.d.). Plotting for Bayesian Models • bayesplot. Stan. Retrieved November 17, 2022, from http://mc-stan.org/bayesplot/

  • Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. and Gelman, A. (2019), Visualization in Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. https://doi.org/10.1111/rssa.12378

  • Gelman, A., Fagan, J., & Kiss, A. (2007). An Analysis of the New York City Police Department’s “Stop-and-Frisk” Policy in the Context of Claims of Racial Bias. Journal of the American Statistical Association, 102(479), 813-823. 10.1198/016214506000001040

  • Gómez-Rubio, V. (2020). Bayesian Inference with INLA. CRC Press. Available at https://becarioprecario.bitbucket.io/inla-gitbook/index.html

  • Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods. Springer.

  • Kurt, W. (2019). Bayesian Statistics the Fun Way: Understanding Statistics and Probability with Star Wars, LEGO, and Rubber Ducks. No Starch Press.

  • Link, W. A., Link, W. A., & Barker, R. J. (2010). Bayesian Inference: With Ecological Applications (R. J. Barker & W. A. Link, Eds.). Elsevier Science.

  • Malouche, D. (n.d.). R tools for Bayesian Statistics. Kaggle. Retrieved November 17, 2022, from https://www.kaggle.com/code/dhafer/r-tools-for-bayesian-statistics

  • McGrayne, S. B. (2011). The Theory that Would Not Die: How Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian Submarines, & Emerged Triumphant from Two Centuries of Controversy. Yale University Press.

  • McGrayne, S. B. (2011). The Theory that Would Not Die: How Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian Submarines, & Emerged Triumphant from Two Centuries of Controversy. Yale University Press.

  • plot: Default INLA plotting in andrewzm/INLA: Functions which allow to perform full Bayesian analysis of latent Gaussian models using Integrated Nested Laplace Approximaxion. (n.d.). RDRR.io. Retrieved November 17, 2022, from https://rdrr.io/github/andrewzm/INLA/man/plot.html

  • R-INLA project. (2022). R-INLA Project. Retrieved November 17, 2022, from https://www.r-inla.org/

  • Robert, C. P., & Marin, J.-M. (2013). Bayesian Essentials with R. Springer New York.

  • Ross, K. (2022). An Introduction to Bayesian Reasoning and Methods. Online publication available at https://bookdown.org/kevin_davisross/bayesian-reasoning-and-methods/poisson.html. Consultado en octubre 2022.

  • Rue, H. et al (2017). Bayesian Computing with INLA: A Review. Annu.Rev.Stat.Appl. 4: 395:421. DOI: 10.1146/annurev-statistics-060116-054045.

  • Samanta, T., Ghosh, J. K., & Delampady, M. (2006). An Introduction to Bayesian Analysis: Theory and Methods (T. Samanta, M. Delampady, & J. K. Ghosh, Eds.). Springer.

  • Statisticat, LLC. (2015). LaplacesDemon Examples. Retrieved October 23, 2022, from https://cran.r-project.org/web/packages/LaplacesDemon/vignettes/Examples.pdf

  • Statisticat, LLC. (2015). Bayesian Inference. The Comprehensive R Archive Network. Retrieved October 23, 2022, from https://cran.r-project.org/web/packages/LaplacesDemon/vignettes/BayesianInference.pdf

  • Stigler, S. (2016, April 12). LaplacesDemon: A Complete Environment for Bayesian Inference within R. The Comprehensive R Archive Network. Retrieved October 23, 2022, from https://cran.r-project.org/web/packages/LaplacesDemon/vignettes/LaplacesDemonTutorial.pdf

  • Wang, X., Yue, R., & Faraway, J. (n.d.). Bayesian Regression with INLA | brinla. Julian Faraway. Retrieved October 27, 2022, from http://julianfaraway.github.io/brinla/